An investigation into the effects of soil and fastener-freezing on ground vibrations induced by high-speed train in frozen regions

Author:

Peng Yuhao,Li Qionglin,Chen Zongping,Zhang Haodi,Sheng Xiaozhen

Abstract

AbstractWith the expansion of high-speed railway network in the world, it is inevitable for railways to pass through seasonal frozen regions. Since in a seasonal frozen region the ground can have significantly different mechanical properties between the freezing season and the warm season, train-induced ground vibration is also season-dependent but it has not received enough attention up to now. This paper gives an investigation into the effects of soil and fastener-freezing on ground vibrations induced by high-speed train in frozen regions. Based on the well-established relationships between soil mechanical properties and freezing temperature, a frozen ground is shown to be still represented by a layered ground and therefore, previously developed models for predicting ground vibration generated by a train running along a track resting on a layered ground can be readily applied. The effects of low temperature on the dynamical properties of fasteners are also considered. Results show that, due to the increased Young’s modulus at freezing condition, the vibration level of a frozen ground near the track is lower than that of the non-frozen counterpart. However, well away from the track, the vibration level of the frozen ground is much stronger than that of the non-frozen one, mainly due to the much-reduced loss factor of the frozen ground, which results in slower attenuation of vibration with propagating distance. Results also show that, the difference in ground vibration between a frozen ground and its non-frozen counterpart is mainly caused by freezing of the ground. The emphasis of this study lies in making clear the characteristics of train-induced ground vibration in frozen regions and the differences between frozen and non-frozen regions, providing some new fundamental insights about this practical problem, which have significant engineering guidance and application value.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3