An innovative deformation coordination method for analyzing distortion effects on box girders

Author:

Wang Chenguang,Shi Mingxin,Huang Jianqiang,Zhang Yuanhai,Li Weiwen,Mansour Walid,Ke Linyuwen,Wang Peng

Abstract

AbstractA deformation coordination method is proposed in this study to account for the distortion effects on a box girder. The differential equation for distortion in vertical web box girders is derived based on the deformation coordination condition of the distortion angle, considering both external loads and internal forces. Subsequently, a comparative analysis is conducted to explore the similarities and differences between the differential equations derived from the proposed deformation coordination method, the plate element analysis method and the total potential energy variation method. The accuracy of the proposed approach is verified through bench-scale tests and numerical simulations. The findings indicate that the derived governing distortion differential equation and distortion attenuation coefficients in the proposed method align with those obtained from the plate element analysis method and the total potential energy variational method, which enhances the applicability to allow for the distortion equations to be obtained simply by calculating the distortion displacements. The analytical findings regarding the distortion warping normal stresses on the cross-sections of the box girders demonstrate favorable correspondence with the experimental results, displaying an acceptable error ranging from − 0.3% to 5.4%. Moreover, the peak of distortion warping normal stresses on the mid-span cross-section increases with higher span-to-depth ratios and height-to-thickness ratios of the web. Consequently, augmenting the thickness of the box wall proves to be an effective means of reducing the distortion effect in box girders.

Funder

Science and Technology Project of Sichuan Province

National Natural Science Fund of China

Shenzhen Natural Science Fund

Shenzhen University Young Faculty Research Start-up Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3