Accurate real-time obstacle detection of coal mine driverless electric locomotive based on ODEL-YOLOv5s

Author:

Yang Tun,Wang Shuang,Tong Jiale,Wang Wenshan

Abstract

AbstractThe accurate identification and real-time detection of obstacles have been considered the premise to ensure the safe operation of coal mine driverless electric locomotives. The harsh coal mine roadway environment leads to low detection accuracy of obstacles based on traditional detection methods such as LiDAR and machine learning, and these traditional obstacle detection methods lead to slower detection speeds due to excessive computational reasoning. To address the above-mentioned problems, we propose a deep learning-based ODEL-YOLOv5s detection model based on the conventional YOLOv5s. In this work, several data augmentation methods are introduced to increase the diversity of obstacle features in the dataset images. An attention mechanism is introduced to the neck of the model to improve the focus of the model on obstacle features. The three-scale prediction of the model is increased to a four-scale prediction to improve the detection ability of the model for small obstacles. We also optimize the localization loss function and non-maximum suppression method of the model to improve the regression accuracy and reduce the redundancy of the prediction boxes. The experimental results show that the mean average precision (mAP) of the proposed ODEL-YOLOv5s model is increased from 95.2 to 98.9% compared to the conventional YOLOv5s, the average precision of small obstacle rock is increased from 89.2 to 97.9%, the detection speed of the model is 60.2 FPS, and it has better detection performance compared with other detection models, which can provide technical support for obstacle identification and real-time detection of coal mine driverless electric locomotives.

Funder

Graduate Innovation Fund of Anhui University of Science and Technology

National Natural Science Foundation of China

Collaborative Innovation Project of Universities in Anhui Province

Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3