Abstract
As automated vehicles have been considered one of the important trends in intelligent transportation systems, various research is being conducted to enhance their safety. In particular, the importance of technologies for the design of preventive automated driving systems, such as detection of surrounding objects and estimation of distance between vehicles. Object detection is mainly performed through cameras and LiDAR, but due to the cost and limits of LiDAR’s recognition distance, the need to improve Camera recognition technique, which is relatively convenient for commercialization, is increasing. This study learned convolutional neural network (CNN)-based faster regions with CNN (Faster R-CNN) and You Only Look Once (YOLO) V2 to improve the recognition techniques of vehicle-mounted monocular cameras for the design of preventive automated driving systems, recognizing surrounding vehicles in black box highway driving videos and estimating distances from surrounding vehicles through more suitable models for automated driving systems. Moreover, we learned the PASCAL visual object classes (VOC) dataset for model comparison. Faster R-CNN showed similar accuracy, with a mean average precision (mAP) of 76.4 to YOLO with a mAP of 78.6, but with a Frame Per Second (FPS) of 5, showing slower processing speed than YOLO V2 with an FPS of 40, and a Faster R-CNN, which we had difficulty detecting. As a result, YOLO V2, which shows better performance in accuracy and processing speed, was determined to be a more suitable model for automated driving systems, further progressing in estimating the distance between vehicles. For distance estimation, we conducted coordinate value conversion through camera calibration and perspective transform, set the threshold to 0.7, and performed object detection and distance estimation, showing more than 80% accuracy for near-distance vehicles. Through this study, it is believed that it will be able to help prevent accidents in automated vehicles, and it is expected that additional research will provide various accident prevention alternatives such as calculating and securing appropriate safety distances, depending on the vehicle types.
Funder
Ministry of Land, Infrastructure and Transport of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference59 articles.
1. Autonomous Ground Vehicles—Concepts and a Path to the Future
2. Navigant Research Leaderboard Report: Automated Driving;Abuelsamid,2017
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献