Abstract
AbstractTransient simulations of dynamic systems, using physics-based scientific computing tools, are practically limited by availability of computational resources and power. While the promise of machine learning has been explored in a variety of scientific disciplines, its application in creation of a framework for computationally expensive transient models has not been fully explored. Here, we present an ensemble approach where one such computationally expensive tool, discrete element method, is combined with time-series forecasting via auto regressive integrated moving average and machine learning methods to simulate a complex pharmaceutical problem: development of an agitation protocol in an agitated filter dryer to ensure uniform solid bed mixing. This ensemble approach leads to a significant reduction in the computational burden, while retaining model accuracy and performance, practically rendering simulations possible. The developed machine-learning model shows good predictability and agreement with the literature, demonstrating its tremendous potential in scientific computing.
Publisher
Springer Science and Business Media LLC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献