Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies

Author:

Zhang Zhihua,Hu Changtao,Wu Zhihui,Zhang Zhen,Yang Shuwen,Yang Wang

Abstract

AbstractShanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.

Funder

the Central Government to Guide Local Scientific and Technological Development

the National Natural Science Foundation of China

National Key R&D Program of China

Key R&D Project of Gansu Province

project of Gansu Provincial Department of Transportation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3