Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model

Author:

Wu Xueling12ORCID,Qi Xiaoshuai1,Peng Bo1ORCID,Wang Junyang1

Affiliation:

1. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

2. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China

Abstract

Landslide susceptibility mapping (LSM) can accurately estimate the location and probability of landslides. An effective approach for precise LSM is crucial for minimizing casualties and damage. The existing LSM methods primarily rely on static indicators, such as geomorphology and hydrology, which are closely associated with geo-environmental conditions. However, landslide hazards are often characterized by significant surface deformation. The Small Baseline Subset-Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology plays a pivotal role in detecting and characterizing surface deformation. This work endeavors to assess the accuracy of SBAS-InSAR coupled with ensemble learning for LSM. Within this research, the study area was Shiyan City, and 12 static evaluation factors were selected as input variables for the ensemble learning models to compute landslide susceptibility. The Random Forest (RF) model demonstrates superior accuracy compared to other ensemble learning models, including eXtreme Gradient Boosting, Logistic Regression, Gradient Boosting Decision Tree, and K-Nearest Neighbor. Furthermore, SBAS-InSAR was utilized to obtain surface deformation rates both in the vertical direction and along the line of sight of the satellite. The former is used as a dynamic characteristic factor, while the latter is combined with the evaluation results of the RF model to create a landslide susceptibility optimization matrix. Comparing the precision of two methods for refining LSM results, it was found that the method integrating static and dynamic factors produced a more rational and accurate landslide susceptibility map.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3