Fast hybrid methods for modeling landslide susceptibility in Ardal County

Author:

Xu Shangshang

Abstract

AbstractRecently, machine learning models have received huge attention for environmental risk modeling. One of these applications is landslide susceptibility mapping which is a necessary primary step for dealing with the landslide risk in prone areas. In this study, a conventional machine learning model called multi-layer perceptron (MLP) neural network is built upon advanced optimization algorithms to achieve a firm prediction of landslide susceptibility in Ardal County, West of Iran. The used geospatial dataset consists of fourteen conditioning factors and 170 landslide events. The used optimizers are electromagnetic field optimization (EFO), symbiotic organisms search (SOS), shuffled complex evolution (SCE), and electrostatic discharge algorithm (ESDA) that contribute to tuning MLP’s internal parameters. The competency of the models is evaluated using several statistical methods to provide a comparison among them. It was discovered that the EFO-MLP and SCE-MLP enjoy much quicker training than SOS-MLP and ESDA-MLP. Further, relying on both accuracy and time criteria, the EFO-MLP was found to be the most efficient model (time = 1161 s, AUC = 0.879, MSE = 0.153, and R = 0.657). Hence, the landslide susceptibility map of this model is recommended to be used by authorities to provide real-world protective measures within Ardal County. For helping this, a random forest-based model showed that Elevation, Lithology, and Land Use are the most important factors within the studied area. Lastly, the solution discovered in this study is converted into an equation for convenient landslide susceptibility prediction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3