Three-Dimensional Modeling of Tsunami Waves Triggered by Submarine Landslides Based on the Smoothed Particle Hydrodynamics Method

Author:

Dai Zili12ORCID,Li Xiaofeng1,Lan Baisen1

Affiliation:

1. Department of Civil Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China

2. Zhoushan Field Scientific Observation and Research Station for Marine Geo-Hazards, China Geological Survey, Qingdao 266237, China

Abstract

Submarine landslides are a global geohazard that can displace huge volumes of loose submarine sediment, thereby triggering enormous tsunami waves and causing a serious threat to coastal cities. To investigate the generation of submarine landslide tsunamis, a three-dimensional numerical model based on the smoothed particle hydrodynamics (SPH) method is presented in this work. The model is first validated through the simulation of two underwater landslide model tests, and is then applied to simulate the movement of the Baiyun landslide in the South China Sea (SCS). The kinetics features of the submarine landslide, including the sliding velocity and runout distance, are obtained from the SPH simulation. The tsunami waves generated by the Baiyun landslide are predicted. In addition, sensitivity analyses are conducted to investigate the impact of landslide volume and water depth on the amplitude of the tsunami waves. The results indicate that the amplitude of tsunami waves triggered by submarine landslides increases with the landslide volume and decreases with the water depth of the landslide.

Funder

open research fund program of the Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey

National Natural Science Foundation of China

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3