RPmirDIP: Reciprocal Perspective improves miRNA targeting prediction

Author:

Kyrollos Daniel G.,Reid Bradley,Dick Kevin,Green James R.

Abstract

AbstractMicroRNAs (miRNAs) are short, non-coding RNAs that interact with messenger RNA (mRNA) to accomplish critical cellular activities such as the regulation of gene expression. Several machine learning methods have been developed to improve classification accuracy and reduce validation costs by predicting which miRNA will target which gene. Application of these predictors to large numbers of unique miRNA–gene pairs has resulted in datasets comprising tens of millions of scored interactions; the largest among these is mirDIP. We here demonstrate that miRNA target prediction can be significantly improved ($$p < 0.001$$p<0.001) through the application of the Reciprocal Perspective (RP) method, a cascaded, semi-supervised machine learning method originally developed for protein-protein interaction prediction. The RP method, aptly named RPmirDIP, augments the original mirDIP prediction scores by leveraging local thresholds from the two complimentary views available to each miRNA–gene pair, rather than apply a traditional global decision threshold. Application of this novel RPmirDIP predictor promises to help identify new, unexpected miRNA–gene interactions. A dataset of RPmirDIP-scored interactions are made available to the scientific community at cu-bic.ca/RPmirDIP and 10.5683/SP2/LD8JKJ.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3