Species-specific microRNA discovery and target prediction in the soybean cyst nematode

Author:

Ajila Victoria,Colley Laura,Ste-Croix Dave T.,Nissan Nour,Cober Elroy R.,Mimee Benjamin,Samanfar Bahram,Green James R.

Abstract

AbstractThe soybean cyst nematode (SCN) is a devastating pathogen for economic and food security considerations. Although the SCN genome has recently been sequenced, the presence of any miRNA has not been systematically explored and reported. This paper describes the development of a species-specific SCN miRNA discovery pipeline and its application to the SCN genome. Experiments on well-documented model nematodes (Caenorhabditis elegans and Pristionchus pacificus) are used to tune the pipeline’s hyperparameters and confirm its recall and precision. Application to the SCN genome identifies 3342 high-confidence putative SCN miRNA. Prediction specificity within SCN is confirmed by applying the pipeline to RNA hairpins from known exonic regions of the SCN genome (i.e., sequences known to not be miRNA). Prediction recall is confirmed by building a positive control set of SCN miRNA, based on a limited deep sequencing experiment. Interestingly, a number of novel miRNA are predicted to be encoded within the intronic regions of effector genes, known to be involved in SCN parasitism, suggesting that these miRNA may also be involved in the infection process or virulence. Beyond miRNA discovery, gene targets within SCN are predicted for all high-confidence novel miRNA using a miRNA:mRNA target prediction system. Lastly, cross-kingdom miRNA targeting is investigated, where putative soybean mRNA targets are identified for novel SCN miRNA. All predicted miRNA and gene targets are made available in appendix and through a Borealis DataVerse open repository (https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/30DEXA).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3