Temperature potentially induced distinctive flavor of mud crab Scylla paramamosain mediated by gut microbiota

Author:

Tang Lei,Wang HuanORCID,Wang Chunlin,Mu Changkao,Wei Hongling,Yao Hongzhi,Ye Chunyu,Chen Lizhi,Shi Ce

Abstract

AbstractMany factors affect the flavor of crabs. However, impact of temperature on flavor has not been reported. Here, we examined Scylla paramamosain collected within the main four producing areas in China from north sampling point (NP) and south sampling point (SP), respectively. The contents of flavouring-related substances in hepatopancreas, muscles and gonads were determined by high-performance liquid chromatography (HPLC). Meanwhile, high-throughput sequencing of 16S RNA gene was used to reveal the diversity distribution of gut microbiota at each sample collection point. Comparisons among flavor substances of edible parts, the implied higher temperature in SP may be beneficial to the accumulation of flavor substances in gonads, while lower temperature in NP may be beneficial to the accumulation of flavor substances in muscles and hepatopancreas. The gut microbiota of crabs, was analyzed via 16S rRNA gene sequencing. The results of gut microbiota showed that there were significant differences in the distribution of gut microbiota in NP and SP. The microbiota composition of SP has a high distribution richness and no absolute dominant bacteria, while NP has absolute dominant bacteria and its microbiota richness was lower than SP. The results of redundancy analysis (RDA) showed that there was a significant correlation between temperature and the relative abundance of gut microbiota, and a significant correlation between gut microbiota and the content of flavor substances. This study indicates that temperature may be one of the main factors for the differences of flavor substances between SP and NP, which was most probably mediated by gut microbiota. Further exploration is needed with laboratory experiments in which the environment is more precisely controlled if these views are to be determined.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3