A super SDM (species distribution model) ‘in the cloud’ for better habitat-association inference with a ‘big data’ application of the Great Gray Owl for Alaska

Author:

Huettmann Falk,Andrews Phillip,Steiner Moriz,Das Arghya Kusum,Philip Jacques,Mi Chunrong,Bryans Nathaniel,Barker Bryan

Abstract

AbstractThe currently available distribution and range maps for the Great Grey Owl (GGOW; Strix nebulosa) are ambiguous, contradictory, imprecise, outdated, often hand-drawn and thus not quantified, not based on data or scientific. In this study, we present a proof of concept with a biological application for technical and biological workflow progress on latest global open access ‘Big Data’ sharing, Open-source methods of R and geographic information systems (OGIS and QGIS) assessed with six recent multi-evidence citizen-science sightings of the GGOW. This proposed workflow can be applied for quantified inference for any species-habitat model such as typically applied with species distribution models (SDMs). Using Random Forest—an ensemble-type model of Machine Learning following Leo Breiman’s approach of inference from predictions—we present a Super SDM for GGOWs in Alaska running on Oracle Cloud Infrastructure (OCI). These Super SDMs were based on best publicly available data (410 occurrences + 1% new assessment sightings) and over 100 environmental GIS habitat predictors (‘Big Data’). The compiled global open access data and the associated workflow overcome for the first time the limitations of traditionally used PC and laptops. It breaks new ground and has real-world implications for conservation and land management for GGOW, for Alaska, and for other species worldwide as a ‘new’ baseline. As this research field remains dynamic, Super SDMs can have limits, are not the ultimate and final statement on species-habitat associations yet, but they summarize all publicly available data and information on a topic in a quantified and testable fashion allowing fine-tuning and improvements as needed. At minimum, they allow for low-cost rapid assessment and a great leap forward to be more ecological and inclusive of all information at-hand. Using GGOWs, here we aim to correct the perception of this species towards a more inclusive, holistic, and scientifically correct assessment of this urban-adapted owl in the Anthropocene, rather than a mysterious wilderness-inhabiting species (aka ‘Phantom of the North’). Such a Super SDM was never created for any bird species before and opens new perspectives for impact assessment policy and global sustainability.

Funder

University of Alaska Fairbanks

Publisher

Springer Science and Business Media LLC

Reference143 articles.

1. Huettmann, F. Economic growth and wildlife conservation in the North Pacific Rim. In Peak Oil, Economic Growth, and Wildlife Conservation (eds Gates, E. & Trauger, D.) 133–156 (Island Press, 2014).

2. Huettmann, F. Climate change effects on terrestrial mammals: A review of global impacts of ecological niche decay in selected regions of high mammal importance. Encycl. Anthropocene 2(2018), 123–130 (2017).

3. Silvy, N. J. (ed.) The Wildlife Techniques Manual: Volume 1: Research. Volume 2: Management (JHU Press, 2020).

4. McArdle, B. H. The structural relationship: Regression in biology. Can. J. Zool. 66(11), 2329–2339 (1988).

5. Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75(5), 1182–1189 (2006).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3