Abstract
Most biologists are now aware that ordinary least square regression is not appropriate when the X and Y variables are both subject to random error. When there is no information about their error variances, there is no correct unbiased solution. Although the major axis and reduced major axis (geometric mean) methods are widely recommended for this situation, they make different, equally restrictive assumptions about the error variances. By using simulated data sets that violate these assumptions, the reduced major axis method is shown to be generally more efficient and less biased than the major axis method. It is concluded that if the error rate of the X variable is thought to be more than a third of that on the Y variable, then the reduced major axis method is preferable; otherwise the least squares technique is acceptable. An analogous technique, the standard minor axis method, is described for use in place of least squares multiple regression when all of the variables are subject to error.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
524 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献