Evolutionary-driven C-MYC gene expression in mammalian fibroblasts

Author:

Moura Marcelo T.ORCID,Silva Roberta L. O.,Cantanhêde Ludymila F.,Ferreira-Silva José C.,Nascimento Pábola S.,Benko-Iseppon Ana M.,Oliveira Marcos A. L.

Abstract

AbstractThe extent to which mammalian cells share similar transcriptomes remains unclear. Notwithstanding, such cross-species gene expression inquiries have been scarce for defined cell types and most lack the dissection of gene regulatory landscapes. Therefore, the work was aimed to determine C-MYC relative expression across mammalian fibroblasts (Ovis aries and Bos taurus) via cross-species RT-qPCR and comprehensively explore its regulatory landscape by in silico tools. The prediction of transcription factor binding sites in C-MYC and its 2.5 kb upstream sequence revealed substantial variation, thus indicating evolutionary-driven re-wiring of cis-regulatory elements. C-MYC and its downstream target TBX3 were up-regulated in Bos taurus fibroblasts. The relative expression of C-MYC regulators [RONIN (also known as THAP11), RXRβ, and TCF3] and the C-MYC-associated transcript elongation factor CDK9 did not differ between species. Additional in silico analyses suggested Bos taurus-specific C-MYC exonization, alternative splicing, and binding sites for non-coding RNAs. C-MYC protein orthologs were highly conserved, while variation was in the transactivation domain and the leucine zipper motif. Altogether, mammalian fibroblasts display evolutionary-driven C-MYC relative expression that should be instructive for understanding cellular physiology, cellular reprogramming, and C-MYC-related diseases.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3