Enhanced thermal properties of poly(lactic acid)/MoS2/carbon nanotubes composites

Author:

Homa Piotr,Wenelska Karolina,Mijowska Ewa

Abstract

AbstractIn this work, few-layered molybdenum disulfide (MoS2) was functionalized with metal oxide (MxOy) nanoparticles which served as a catalyst for carbon nanotubes (CNT) growth in the chemical vapour deposition (CVD) process. The resulting MoS2/MxOy/CNT functionalized nanomaterials were used for flame retarding application in poly(lactic acid) (PLA). The composites were extruded with a twin-screw extruder with different wt% loading of the nanomaterial. Full morphology characterization was performed, as well as detailed analysis of fire performance of the obtained composites in relation to pristine PLA and PLA containing an addition of the composites. The samples containing the addition of MoS2/MxOy/CNT displayed up to over 90% decrease in carbon oxide (CO) emission during pyrolysis in respect to pristine PLA. Microscale combustion calorimetry testing revealed reduction of key parameters in comparison to pristine PLA. Laser flash analysis revealed an increase in thermal conductivity of composite samples reaching up to 65% over pristine PLA. These results prove that few-layered 2D nanomaterials such as MoS2 functionalized with CNT can be effectively used as flame retardance of PLA.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3