Copper sulfide and zinc oxide hybrid nanocomposite for wastewater decontamination of pharmaceuticals and pesticides

Author:

Mohammed Reem,Ali Mohamed Eid M.,Gomaa Ehsan,Mohsen Mona

Abstract

AbstractIn this work, hybrid nanocomposites of CuS QDs @ ZnO photocatalysts are fabricated through a facile microwave-assisted (MW) hydrothermal method as a green preparation process. The prepared photocatalysts (PCs) are employed under simulated sunlight (SL) for the degradation of ciprofloxacin, ceftriaxone, ibuprofen pharmaceuticals, methylene blue dye, and 2,4,5-trichlorophenoxyacetic acid (2,4-D) pesticide. The prepared photocatalysts are characterized in detail using several compositional, optical, and morphological techniques. The influence of the CuS (QDs) wt. % on morphological, structural, as well as photocatalytic degradation efficiency have been investigated. The small displacement between the (107) plane of CuS and the (102) plane of ZnO can confirmed the existence of lattice interaction, implying the formation of p-n heterojunctions. TEM and XRD results demonstrated that the CuS QDs are established and uniformly decorated on the surface of ZnO NRs, confirming the forming of an efficient CuS QDs @ ZnO heterojunction nanostructures. The CuS QDs @ ZnO hybrid nanocomposites showed enhancement in crystallinity, light absorption, surface area, separation of e–h pair and inhibition in their recombination at an interfacial heterojunction. In addition it is found that, 3 wt% CuS QDs @ ZnO has the foremost influence. The results showed improvement of photocatalytic activity of the 3% CuS QDs @ ZnO hybrid nanocomposite as compared to the bare ZnO nanorods. The impressive photocatalytic performance of CuS @ ZnO heterostructure nanorods may be attributed to efficient charge transfer. The prepared CuS QDs @ ZnO hybrid nanocomposites exhibited 100% removal for MB dye, after 45 min, and after 60 min for ibuprofen, ciprofloxacin pharmaceuticals, and 2.4.5 trichloro phenoxy acetic acid pesticide with the catalyst amount of 0.2 g/L. Although 100% removal of ceftriaxone pharmaceutical acheived after 90 min. In addition CuS QDs @ ZnO hybrid nanocomposites exhibited complete removal of COD for ibuprofen, ceftriaxone pharmaceuticals and 2.4.5 trichloro phenoxy acetic acid pesticide after 2 h with no selectivity. Briefly, 3% CuS QDs@ZnO hybrid nanocomposites can be considered as promising photoactive materials under simulated sunlight for wastewater decontamination.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3