A study of the oxidative processes in human plasma by time-resolved fluorescence spectroscopy

Author:

Wybranowski Tomasz,Ziomkowska Blanka,Cyrankiewicz Michał,Bosek Maciej,Pyskir Jerzy,Napiórkowska Marta,Kruszewski Stefan

Abstract

AbstractThe aim of this study was to examine the usefulness of time-resolved fluorescence spectroscopy in the evaluation of the oxidative processes in human plasma. To investigate the impact of oxidative stress on the fluorescence of plasma, five studied markers (thiobarbituric acid-reactive substances, ischemia modified albumin, carbonyl groups, hydrogen peroxide, advanced oxidation protein products) were chosen as oxidative damage approved markers. Our method presents several advantages over traditional methods as it is a direct, non-time-consuming, repeatable, and non-invasive technique that requires only simple pre-treatment of samples without additional reagents and the sample size needed for analysis is small. In principle, each modification of the protein in plasma can be expected to modify its fluorescence properties and hence its lifetime or intensity. The study involved 59 blood donors with no evidence of disease. The research was conducted at excitation wavelengths of 280 nm and 360 nm, and emission was measured at wavelengths of 350 nm and 440 nm, respectively. Our results, although preliminary, suggest that the application of fluorescence measurements can be considered as an effective marker of oxidative stress. Regression analyses showed that a notable growth in fluorescence intensity at 440 nm and a simultaneous decrease in fluorescence intensity and mean fluorescence lifetime at 350 nm are associated with higher levels of oxidative stress.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3