Abstract
AbstractThis study investigated the non-thermal effects of Wi-Fi radiofrequency radiation of 2.4 GHz on global gene expression inEscherichia coliK-12 DH5α. High-throughput RNA-sequencing of 2.4 GHz exposed and non-exposed bacteria revealed that 101 genes were differentially expressed (DEGs) at P ≤ 0.05. The up-regulated genes were 52 while the down-regulated ones were 49. QRT-PCR analysis ofpgaD,fliC,cheY,malP,malZ,motB,alsC,alsK,appBandappXconfirmed the RNA-seq results. About 7% of DEGs are involved in cellular component organization, 6% in response to stress stimulus, 6% in biological regulation, 6% in localization, 5% in locomotion and 3% in cell adhesion. Database for annotation, visualization and integrated discovery (DAVID) functional clustering revealed that DEGs with high enrichment score included genes for localization of cell, locomotion, chemotaxis, response to external stimulus and cell adhesion. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that the pathways for flagellar assembly, chemotaxis and two-component system were affected. Go enrichment analysis indicated that the up-regulated DEGs are involved in metabolic pathways, transposition, response to stimuli, motility, chemotaxis and cell adhesion. The down-regulated DEGs are associated with metabolic pathways and localization of ions and organic molecules. Therefore, the exposure ofE. coliDH5α to Wi-Fi radiofrequency radiation for 5 hours influenced several bacterial cellular and metabolic processes.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Chang, S.-K. et al. Genotoxicity evaluation of electromagnetic fields generated by 835-MHz mobile phone frequency band. Eur. J. Cancer Prev. 14, 175–9 (2005).
2. Cranfield, C., Wieser, H. G., Al Madan, J. & Dobson, J. Preliminary evaluation of nanoscale biogenic magnetite-based ferromagnetic transduction mechanisms for mobile phone bioeffects. IEEE Trans. Nanobioscience 2, 40–3 (2003).
3. Mohd-zain, Z. & Buniyamin, N. Effects of Mobile Phone Generated High Frequency Electromagnetic Field on the Viability and Biofilm Formation of Staphylococcus aureus. World Acad. Sci. Eng. Technol. 6, 221–224 (2012).
4. Nasri, K., Daghfous, D. & Landoulsi, A. Effects of microwave (2.45 GHz) irradiation on some biological characters of Salmonella typhimurium. Comptes Rendus - Biol. 336, 194–202 (2013).
5. Taheri, M. et al. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation. J. Biomed. Phys. Eng. 5, 115–20 (2015).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献