Experimental analysis of enhanced finite set model predictive control and direct torque control in SRM drives for torque ripple reduction

Author:

M Deepak,Samithas Devakirubakaran,Balachandran Praveen Kumar,Selvarajan Shitharth

Abstract

AbstractThe magnet-less switched reluctance motor (SRM) speed-torque characteristics are ideally suited for traction motor drive characteristics and its advantage to minimize the overall cost of on-road EVs. The main drawbacks are torque and flux ripple, which have produced high in low-speed operation. However, the emerging direct torque control (DTC) operated magnitude flux and torque estimation with voltage vectors (VVs) gives high torque ripples due to the selection of effective switching states and sector partition accuracy. On the other hand, the existing model predictive control (MPC) with multiple objective and optimization weighting factors produces high torque ripples due to the system dynamics and constraints. Therefore, existing DTC and MPC can result in high torque ripples. This paper proposed a finite set (FS)-MPC with a single cost function objective without weighting factor: the predicted torque considered to evaluate VVs to minimize the ripples further. The selected optimal VV minimizes the SRM drive torque and flux ripples in steady and dynamic state behaviour. The classical DTC and proposed model were developed, and simulation results were verified using MATLAB/Simulink. The proposed model operated in SRM drives experimental results to prove the effective minimization of torque and flux ripples compared to the existing DTC.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3