A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting

Author:

Shin Jaeseung,Lim Joon Seok,Huh Yong-Min,Kim Jie-Hyun,Hyung Woo Jin,Chung Jae-Joon,Han Kyunghwa,Kim Sungwon

Abstract

AbstractThis study aims to evaluate the performance of a radiomic signature-based model for predicting recurrence-free survival (RFS) of locally advanced gastric cancer (LAGC) using preoperative contrast-enhanced CT. This retrospective study included a training cohort (349 patients) and an external validation cohort (61 patients) who underwent curative resection for LAGC in 2010 without neoadjuvant therapies. Available preoperative clinical factors, including conventional CT staging and endoscopic data, and 438 radiomic features from the preoperative CT were obtained. To predict RFS, a radiomic model was developed using penalized Cox regression with the least absolute shrinkage and selection operator with ten-fold cross-validation. Internal and external validations were performed using a bootstrapping method. With the final 410 patients (58.2 ± 13.0 years-old; 268 female), the radiomic model consisted of seven selected features. In both of the internal and the external validation, the integrated area under the receiver operating characteristic curve values of both the radiomic model (0.714, P < 0.001 [internal validation]; 0.652, P = 0.010 [external validation]) and the merged model (0.719, P < 0.001; 0.651, P = 0.014) were significantly higher than those of the clinical model (0.616; 0.594). The radiomics-based model on preoperative CT images may improve RFS prediction and high-risk stratification in the preoperative setting of LAGC.

Funder

the National Research Foundation of Korea funded by the Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3