Author:
Bandaru Srinivas,Tsuji Mika Higashide,Shimizu Yurika,Usami Kaya,Lee Suni,Takei Naoko Kumagai,Yoshitome Kei,Nishimura Yasumitsu,Otsuki Takemi,Ito Tatsuo
Abstract
AbstractCas13 endonuclease activity depends on the RNA local secondary structure with strong preference for single-stranded (SS) regions. Hence, it becomes indispensable to identify the SS regions for effective Cas13 mediated RNA knockdown. We herein present rational gRNA design by integrating experimental structure-seq data and predicted structural models. Utilizing structure-seq data for XIST transcript, we observed that gRNAs targeting the SS regions significantly induce transcript knockdown and cleavage than those targeting double-stranded (DS) regions. Further, we identified the “central seed region” in the gRNA that upon targeting the SS regions efficiently facilitates Cas13 mediated cleavage. In our following pursuits, we considered the scenario wherein experimental structure-seq data is not available, hence we used SS18-SSX2 fusion transcript indicated in synovial sarcomas and computationally predicted its structure. We observed that gRNAs targeting the SS regions predicted from the structure, efficiently induced necrosis compared to gRNAs that target the DS regions. In conclusion, for the effective RNA knockdown, the Cas13 mediated targeting strategy presented herein emphasizes the designing of gRNAs specifically targeting SS regions by utilizing structural information. Further, this strategy, in turn, can be anticipated to narrow the search space for gRNA design (by exclusively targeting SS regions) especially when lncRNAs are the targets.
Funder
KAKENHI Grant-in-Aid for Young Scientists
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献