A compact tri-notched flexible UWB antenna based on an inkjet-printable and plasma-activated silver nano ink

Author:

Yang Wendong,Zhao Xun,Guo Zihao,Sun Haoqiang,List-Kratochvil Emil J. W.

Abstract

AbstractThe rapid development of ultrawideband (UWB) communication systems has resulted in increasing performance requirements for the antenna system. In addition to a wide bandwidth, fast propagation rates and compact dimensions, flexibility, wearability or portability are also desirable for UWB antennas, as are excellent notch characteristics. Although progress has been made in the development of flexible/wearable antennas desired notch properties are still rather limited. Moreover, most presently available flexible UWB antennas are fabricated using environmentally not attractive subtractive etching-based processes. The usage of facile additive sustainably inkjet printing processes also utilizing low temperature plasma-activated conductive inks is rarely reported. In addition, the currently used tri-notched flexible UWB antenna designs have a relatively large footprint, which poses difficulties when integrated into miniaturized and compact communication devices. In this work, a silver nano ink is used to fabricate the antenna via inkjet printing and an efficient plasma sintering procedure. For the targeted UWB applications miniaturized tri-notched flexible antenna is realized on a flexible polyethylene terephthalate (PET) substrate with a compact size of 17.6 mm × 16 mm × 0.12 mm. The antenna operates in the UWB frequency band (2.9–10.61 GHz), and can shield interferences from WiMAX (3.3–3.6 GHz), WLAN (5.150–5.825 GHz) and X-uplink (7.9–8.4 GHz) bands, as well as exhibits a certain of bendability. Three nested "C" slots of different sizes were adopted to achieve notch features. The simulation and test results demonstrate that the proposed antenna can generate signal radiation in the desired UWB frequency band while retaining the desired notch properties and having acceptable SAR values on-body, making it a viable candidate for usage in flexible or wearable communication transmission devices. The research provides a facile and highly efficient method for fabricating flexible/wearable UWB antennas, that is, the effective combination of inkjet printing processing, flexible substrates, low temperature-activated conductive ink and antenna structure design.

Funder

Department of Education of Liaoning Province

Liaoning Technical University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3