A miniaturized microstrip antenna with tunable double band-notched characteristics for UWB applications

Author:

Chao Zhang,Zitong Zhao,Pei Xiao,Jie Yu,Zhu Liu,Gaosheng Li

Abstract

AbstractThis paper proposes the step-by-step design procedure for obtaining independent dual band-notch performance, which provides a valuable method for designing tunable dual band-notched UWB antenna. The proposed antenna consists of the semicircle ring-like radiating patch with an elliptical-shaped slot and double split ring resonators on the top surface of the substrate and defected ground structure (DGS) on the bottom surface of the substrate. The operating frequencies ranged from 1.3 to 11.6 GHz (S11 < − 10 dB). By loading varactor diodes at the gap of the resonators structure and changing the varactor diode’s reverse bias voltage(0–30 V), a wider band-notched tuning range from 2.47–4.19 to 4.32–5.96 GHz can be achieved, which covers the whole WiMAX band and WLAN band. The experimental results agree well with the simulated results. The notched gain at notched frequency points is about − 5.3 dBi and − 5 dBi, demonstrating that the narrow-band interference signal could be efficiently suppressed. The security of UWB communication systems can be further enhanced. Meanwhile, the selection of varactor diode and DC bias circuit are fully considered. Hence, the accuracy of the experiment results and antenna operating performance have been improved. Furthermore, the proposed antenna only has an electrical size of 0.26λ*0.19λ at 1.3 GHz. Compared to the related reported antennas, the proposed antenna has achieved a simpler structure, low profile, compact size, tunable dual band-notched characteristics, extensive independent tunable range, and good band-notched performance simultaneously, to the best of our knowledge. The proposed antenna is believed to have a valuable prospect in UWB communication, Wireless Body Area Network, Industry Science Medicine, mobile communication applications, etc.

Funder

National Natural Science Foundation of China

Program of China Postdoctoral Council

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3