Pharmacokinetics and pharmacodynamics integration of danofloxacin against Eschrichia coli in piglet ileum ultrafiltration probe model

Author:

Yang Yuqi,Cheng Ping,Xiao Tianshi,Ulziikhutag Jargalsaikhan,Yu Hongxiao,Li Jiarui,Liu Ruimeng,Muhammad Ishfaq,Zhang Xiuying

Abstract

AbstractImproper use of antibiotics results in poor treatment and severe bacterial resistance. In this study, ultrafiltration probes were successfully placed in the ileum of piglets with the aid of anesthetic. After the fluoroquinolone antimicrobial drug danofloxacin (DAN) was intramuscularly administered, blood and ileum ultrafiltrate were collected at different time points and then determined by High Performance Liquid Chromatography (HPLC). Pharmacokinetics (PK) parameters for plasma and ileum ultrafiltrate were calculated by WinNonlin software. The DAN concentration in ileum ultrafiltrate was much higher than that in plasma during the period 1.2–48 h. The DAN concentration in plasma reached its maximum at 1.10 ± 0.03 h, but reached at 6.00 ± 0.00 h in the ileum ultrafiltrate. The mean Cmax of the ileum is 13.59 times that of plasma. The elimination half-life (T1/2β) in the ileum ultrafiltrate (6.84 ± 1.49 h) was shorter than those in plasma (7.58 ± 3.20 h). The MIC, MBC and MPC of DAN in MH broth against Escherichia coli (O158) were 0.5 µg/mL, 0.5 µg/mL and 4 µg/mL, respectively. Both in vitro and ex vivo kill curves indicated that the killing mechanism of DAN against E. coli is concentration-dependent. The AUC/MPC ratio is 21.33 ± 2.14. Mean PK/PD index (AUC24h/MIC) for ileum ultrafiltrate that achieved bacteriostatic, bactericidal, and eradication were 99.85, 155.57, and 218.02 h, respectively. Three different dosages (1.49 mg/kg, 2.42 mg/kg, and 3.24 mg/kg) were calculated respectively based on AUC24h/MIC ratio above, which might provide a novel approach to the rational design of dosage schedules.

Funder

the Guizhou University of Traditional Chinese Medicine PhD Startup Fund

National Science and Technology Project and National 13th Five-Year Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3