Optimization of probiotic therapeutics using machine learning in an artificial human gastrointestinal tract

Author:

Westfall Susan,Carracci Francesca,Estill Molly,Zhao Danyue,Wu Qing-li,Shen Li,Simon James,Pasinetti Giulio Maria

Abstract

AbstractThe gut microbiota’s metabolome is composed of bioactive metabolites that confer disease resilience. Probiotics’ therapeutic potential hinges on their metabolome altering ability; however, characterizing probiotics’ metabolic activity remains a formidable task. In order to solve this problem, an artificial model of the human gastrointestinal tract is introduced coined the ABIOME (A Bioreactor Imitation of the Microbiota Environment) and used to predict probiotic formulations’ metabolic activity and hence therapeutic potential with machine learning tools. The ABIOME is a modular yet dynamic system with real-time monitoring of gastrointestinal conditions that support complex cultures representative of the human microbiota and its metabolome. The fecal-inoculated ABIOME was supplemented with a polyphenol-rich prebiotic and combinations of novel probiotics that altered the output of bioactive metabolites previously shown to invoke anti-inflammatory effects. To dissect the synergistic interactions between exogenous probiotics and the autochthonous microbiota a multivariate adaptive regression splines (MARS) model was implemented towards the development of optimized probiotic combinations with therapeutic benefits. Using this algorithm, several probiotic combinations were identified that stimulated synergistic production of bioavailable metabolites, each with a different therapeutic capacity. Based on these results, the ABIOME in combination with the MARS algorithm could be used to create probiotic formulations with specific therapeutic applications based on their signature metabolic activity.

Funder

National Center for Complementary and Integrative Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3