Run-off election-based decision method for the training and inference process in an artificial neural network

Author:

Jang Jingon,Jang Seonghoon,Choi Sanghyeon,Wang Gunuk

Abstract

AbstractGenerally, the decision rule for classifying unstructured data in an artificial neural network system depends on the sequence results of an activation function determined by vector–matrix multiplication between the input bias signal and the analog synaptic weight quantity of each node in a matrix array. Although a sequence-based decision rule can efficiently extract a common feature in a large data set in a short time, it can occasionally fail to classify similar species because it does not intrinsically consider other quantitative configurations of the activation function that affect the synaptic weight update. In this work, we implemented a simple run-off election-based decision rule via an additional filter evaluation to mitigate the confusion from proximity of output activation functions, enabling the improved training and inference performance of artificial neural network system. Using the filter evaluation selected via the difference among common features of classified images, the recognition accuracy achieved for three types of shoe image data sets reached ~ 82.03%, outperforming the maximum accuracy of ~ 79.23% obtained via the sequence-based decision rule in a fully connected single layer network. This training algorithm with an independent filter can precisely supply the output class in the decision step of the fully connected network.

Funder

National Research Foundation of Korea

Basic Science Research Program through the NRF funded by the Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3