Plasmonic Nanolenses Produced by Cylindrical Vector Beam Printing for Sensing Applications

Author:

Syubaev S. A.,Zhizhchenko A. Yu.,Pavlov D. V.,Gurbatov S. O.,Pustovalov E. V.,Porfirev A. P.,Khonina S. N.,Kulinich S. A.,Rayappan J. B. B.,Kudryashov S. I.,Kuchmizhak A. A.

Abstract

AbstractInteraction of complex-shaped light fields with specially designed plasmonic nanostructures gives rise to various intriguing optical phenomena like nanofocusing of surface waves, enhanced nonlinear optical response and appearance of specific low-loss modes, which can not be excited with ordinary Gaussian-shaped beams. Related complex-shaped nanostructures are commonly fabricated using rather expensive and time-consuming electron- and ion-beam lithography techniques limiting real-life applicability of such an approach. In this respect, plasmonic nanostructures designed to benefit from their excitation with complex-shaped light fields, as well as high-performing techniques allowing inexpensive and flexible fabrication of such structures, are of great demand for various applications. Here, we demonstrate a simple direct maskless laser-based approach for fabrication of back-reflector-coupled plasmonic nanorings arrays. The approach is based on delicate ablation of an upper metal film of a metal-insulator-metal (MIM) sandwich with donut-shaped laser pulses followed by argon ion-beam polishing. After being excited with a radially polarized beam, the MIM configuration of the nanorings permitted to realize efficient nanofocusing of constructively interfering plasmonic waves excited in the gap area between the nanoring and back-reflector mirror. For optimized MIM geometry excited by radially polarized CVB, substantial enhancement of the electromagnetic near-fields at the center of the ring within a single focal spot with the size of 0.37λ2 can be achieved, which is confirmed by Finite Difference Time Domain calculations, as well as by detection of 100-fold enhanced photoluminescent signal from adsorbed organic dye molecules. Simple large-scale and cost-efficient fabrication procedure offering also a freedom in the choice of materials to design MIM structures, along with remarkable optical and plasmonic characteristics of the produced structures make them promising for realization of various nanophotonic and biosensing platforms that utilize cylindrical vector beam as a pump source.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3