Plasmon near-field coupling and universal scaling behavior in shifted-core coaxial nano-cavity pair

Author:

Li Xi,Ghaffari Abbas,Abbas Farhat1,Gu QingORCID

Affiliation:

1. The University of Texas at Dallas

Abstract

We computationally and analytically investigate the plasmon near-field coupling phenomenon and the associated universal scaling behavior in a pair of coupled shifted-core coaxial nano-cavities. Each nano-cavity is composed of an InGaAsP gain medium sandwiched between a silver (Ag) core and an Ag shell. The evanescent coupling between the cavities lifts the degeneracy of the cut-off free transverse electromagnetic (TEM) like mode. The mode splitting of the supermodes is intensified by shifting the metal core position, which induces symmetry breaking. This coupling phenomenon is explained with spring-capacitor analogy and circuit analysis. The numerical simulation results reveal an exponential decay in the fractional plasmon wavelength relative to the ratio of gap distance and core shifting distance, which aligns with the plasmon ruler equation. In addition, by shifting the Ag cores in both cavities toward the center of the coupled structure, the electromagnetic field becomes strongly localized in nanoscale regions (hotspots) in the gain medium between the cavities, thus achieving extreme plasmonic nanofocusing. Utilizing this nanofocusing effect, we propose a refractive index sensor by placing a fluidic channel between the two cavities in close vicinity to the hotspots and reaching the highest sensitivity of ∼700nm/RIU.

Funder

Army Research Office

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3