Author:
Guo Xiuzhi,Li Qiang,Yan Binbin,Wang Yuefeng,Wang Sheng,Xiong Feng,Zhang Chengcai,Zhang Yan,Guo Lanping
Abstract
AbstractAtractylodes lancea rhizome (AR) has high medicinal and economic value. A previous study has reported that the accumulation of sesquiterpenoids in AR has obvious advantages under bamboo canopy. A concrete shade value to promote the cultivation of high-quality AR has not been established. In this study, 80% shading was screened at six different light intensities (100%, 80%, 60%, 40%, 20%, 7%), and the mechanism was explored in terms of photosynthetic efficiency and phytohormones levels. The results indicated that the total sesquiterpenoid content of 80% mild shading increased by 58%, 52%, and 35%, respectively, compared to 100% strong light in seedling, expansion, and harvest stages and increased by 144%, 178%, and 94%, respectively, compared with 7% low light. The sesquiterpenoids hinesol and β-eudesmol contributed approximately 70% to the differential contribution ratio between mild shading and strong light (100%) or between mild shading and low light (7%). Furthermore, HMGR, DXR, and FPPS genes, which regulate sesquiterpenoid synthesis, were significantly upregulated in 80% mild shading. Transpiration rate; the intercellular CO2 concentration; net photosynthetic rate; and levels of jasmonic acid, abscisic acid, and gibberellin were strongly correlated (r > 0.85) with sesquiterpenoid accumulation. Cis-acting elements responding to light and phytohormones were present within the promoter regions of HMGR, DXR, and FPPS. Therefore, 80% shading promotes the synthesis and accumulation of sesquiterpenoids in AR by regulating photosynthetic efficiency and phytohormone production, thereby promoting transcriptional expression.
Funder
the National Natural Science Foundation of China
Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine
Scientific and technological innovation project of China Academy of Chinese Medical Sciences
Publisher
Springer Science and Business Media LLC