Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with machine learning

Author:

Pataki Bálint Ármin,Matamoros Sébastien,van der Putten Boas C. L.,Remondini Daniel,Giampieri Enrico,Aytan-Aktug Derya,Hendriksen Rene S.,Lund Ole,Csabai István,Schultsz Constance,Matamoros S.,Janes V.,Hendriksen R. S.,Lund O.,Clausen P.,Aarestrup F. M.,Koopmans M.,Pataki B.,Visontai D.,Stéger J.,Szalai-Gindl J M.,Csabai I.,Pakseresht N.,Rossello M.,Silvester N.,Amid C.,Cochrane G.,Schultsz C.,Pradel F.,Westeel E.,Fuchs S.,Kumar S. Malhotra,Xavier B. Britto,Ngoc M. Nguyen,Remondini D.,Giampieri E.,Pasquali F.,Petrovska L.,Ajayi D.,Nielsen E. M.,Trung N. V.,Hoa N. T.,Ishii Y.,Aoki K.,McDermott P.,

Abstract

AbstractIt is important that antibiotics prescriptions are based on antimicrobial susceptibility data to ensure effective treatment outcomes. The increasing availability of next-generation sequencing, bacterial whole genome sequencing (WGS) can facilitate a more reliable and faster alternative to traditional phenotyping for the detection and surveillance of AMR. This work proposes a machine learning approach that can predict the minimum inhibitory concentration (MIC) for a given antibiotic, here ciprofloxacin, on the basis of both genome-wide mutation profiles and profiles of acquired antimicrobial resistance genes. We analysed 704 Escherichia coli genomes combined with their respective MIC measurements for ciprofloxacin originating from different countries. The four most important predictors found by the model, mutations in gyrA residues Ser83 and Asp87, a mutation in parC residue Ser80 and presence of the qnrS1 gene, have been experimentally validated before. Using only these four predictors in a linear regression model, 65% and 93% of the test samples’ MIC were correctly predicted within a two- and a four-fold dilution range, respectively. The presented work does not treat machine learning as a black box model concept, but also identifies the genomic features that determine susceptibility. The recent progress in WGS technology in combination with machine learning analysis approaches indicates that in the near future WGS of bacteria might become cheaper and faster than a MIC measurement.

Funder

Horizon 2020 Framework Programme

National Research, Development and Innovation Fund of Hungary

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3