The gravistimulation-induced very slow Ca2+ increase in Arabidopsis seedlings requires MCA1, a Ca2+-permeable mechanosensitive channel

Author:

Nakano Masataka,Furuichi Takuya,Sokabe Masahiro,Iida Hidetoshi,Tatsumi Hitoshi

Abstract

AbstractGravity is a critical environmental factor affecting the morphology and function of plants on Earth. Gravistimulation triggered by changes in the gravity vector induces an increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) as an early process of gravity sensing; however, its role and molecular mechanism are still unclear. When seedlings ofArabidopsis thalianaexpressing apoaequorin were rotated from the upright position to the upside-down position, a biphasic [Ca2+]c-increase composed of a fast-transient [Ca2+]c-increase followed by a slow [Ca2+]c-increase was observed. We find here a novel type [Ca2+]c-increase, designated a very slow [Ca2+]c-increase that is observed when the seedlings were rotated back to the upright position from the upside-down position. The very slow [Ca2+]c-increase was strongly attenuated in knockout seedlings defective in MCA1, a mechanosensitive Ca2+-permeable channel (MSCC), and was partially restored inMCA1-complemented seedlings. The mechanosensitive ion channel blocker, gadolinium, blocked the very slow [Ca2+]c-increase. This is the first report suggesting the possible involvement of MCA1 in an early event related to gravity sensing in Arabidopsis seedlings.

Funder

Grant-in-Aid for Scientific Research on Innovative Areas

Grant-in-Aid for Young Scientists

ICORP/SORST

Scientific Research on Priority Areas

Culture, Sports, Science and Technology, a grant from JSF

Creative Scientific Research

The Japan Space Forum

Culture, Sports, Science and Technology

Grants-in-Aid for Scientific Research on Priority Area

Grant-in-Aid for Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3