Insights into Plant Sensory Mechanisms under Abiotic Stresses

Author:

Jin Songsong12,Wei Mengting1,Wei Yunmin12ORCID,Jiang Zhonghao1

Affiliation:

1. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China

2. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

As sessile organisms, plants cannot survive in harmful environments, such as those characterized by drought, flood, heat, cold, nutrient deficiency, and salt or toxic metal stress. These stressors impair plant growth and development, leading to decreased crop productivity. To induce an appropriate response to abiotic stresses, plants must sense the pertinent stressor at an early stage to initiate precise signal transduction. Here, we provide an overview of recent progress in our understanding of the molecular mechanisms underlying plant abiotic stress sensing. Numerous biomolecules have been found to participate in the process of abiotic stress sensing and function as abiotic stress sensors in plants. Based on their molecular structure, these biomolecules can be divided into four groups: Ca2+-permeable channels, receptor-like kinases (RLKs), sphingolipids, and other proteins. This improved knowledge can be used to identify key molecular targets for engineering stress-resilient crops in the field.

Funder

Natural Science Foundation of Guangdong Province

Research Team Cultivation Program of Shenzhen University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3