Validation metrics of homogenization techniques on artificially inhomogenized monthly temperature networks in Sweden and Slovenia (1950–2005)

Author:

Coscarelli Roberto,Caroletti Giulio Nils,Joelsson Magnus,Engström Erik,Caloiero Tommaso

Abstract

AbstractIn order to correctly detect climate signals and discard possible instrumentation errors, establishing coherent data records has become increasingly relevant. However, since real measurements can be inhomogeneous, their use for assessing homogenization techniques is not directly possible, and the study of their performance must be done on homogeneous datasets subjected to controlled, artificial inhomogeneities. In this paper, considering two European temperature networks over the 1950–2005 period, up to 7 artificial breaks and an average of 107 missing data per station were introduced, in order to determine that mean square error, absolute bias and factor of exceedance can be meaningfully used to validate the best-performing homogenization technique. Three techniques were used, ACMANT and two versions of HOMER: the standard, automated setup mode and a manual setup. Results showed that the HOMER techniques performed better regarding the factor of exceedance, while ACMANT was best with regard to absolute error and root mean square error. Regardless of the technique used, it was also established that homogenization quality anti-correlated meaningfully to the number of breaks. On the other hand, as missing data are almost always replaced in the two HOMER techniques, only ACMANT performance is significantly, negatively affected by the amount of missing data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

1. IPCC Fifth Assessment Report (AR5) (Cambridge University Press, 2014).

2. Hunziker, S. et al. Identifying, attributing, and overcoming common data quality issues of manned station observations. Int. J. Climatol. 37, 4131–4145 (2017).

3. Westerberg, I. et al. Precipitation data in a mountainous catchment in Honduras: Quality assessment and spatiotemporal characteristics. Theor. Appl. Climatol. 101, 381–396 (2009).

4. WMO No. 8. Guide to Meteorological Instruments and Methods of Observation 7th edn. (World Meteorological Organization, 2008).

5. WMO No. 485. Manual on the Global Data-processing and Forecasting System (World Meteorological Organization, 2010).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3