Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy

Author:

Bychkov Dmitrii,Linder Nina,Tiulpin Aleksei,Kücükel Hakan,Lundin Mikael,Nordling Stig,Sihto Harri,Isola Jorma,Lehtimäki Tiina,Kellokumpu-Lehtinen Pirkko-Liisa,von Smitten Karl,Joensuu Heikki,Lundin Johan

Abstract

AbstractThe treatment of patients with ERBB2 (HER2)-positive breast cancer with anti-ERBB2 therapy is based on the detection of ERBB2 gene amplification or protein overexpression. Machine learning (ML) algorithms can predict the amplification of ERBB2 based on tumor morphological features, but it is not known whether ML-derived features can predict survival and efficacy of anti-ERBB2 treatment. In this study, we trained a deep learning model with digital images of hematoxylin–eosin (H&E)-stained formalin-fixed primary breast tumor tissue sections, weakly supervised by ERBB2 gene amplification status. The gene amplification was determined by chromogenic in situ hybridization (CISH). The training data comprised digitized tissue microarray (TMA) samples from 1,047 patients. The correlation between the deep learning–predicted ERBB2 status, which we call H&E-ERBB2 score, and distant disease-free survival (DDFS) was investigated on a fully independent test set, which included whole-slide tumor images from 712 patients with trastuzumab treatment status available. The area under the receiver operating characteristic curve (AUC) in predicting gene amplification in the test sets was 0.70 (95% CI, 0.63–0.77) on 354 TMA samples and 0.67 (95% CI, 0.62–0.71) on 712 whole-slide images. Among patients with ERBB2-positive cancer treated with trastuzumab, those with a higher than the median morphology–based H&E-ERBB2 score derived from machine learning had more favorable DDFS than those with a lower score (hazard ratio [HR] 0.37; 95% CI, 0.15–0.93; P = 0.034). A high H&E-ERBB2 score was associated with unfavorable survival in patients with ERBB2-negative cancer as determined by CISH. ERBB2-associated morphology correlated with the efficacy of adjuvant anti-ERBB2 treatment and can contribute to treatment-predictive information in breast cancer.

Funder

Biomedicum Helsinki Foundation

Orion-Pharmos Research Foundation

iCAN Digital Precision Cancer Medicine Program

Sigrid Jusélius Foundation

Finska Läkaresällskapet

HiLIFE Helsinki Institute of Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3