Evaluation of motion artefact reduction depending on the artefacts’ directions in head MRI using conditional generative adversarial networks

Author:

Usui Keisuke,Muro Isao,Shibukawa Syuhei,Goto Masami,Ogawa Koichi,Sakano Yasuaki,Kyogoku Shinsuke,Daida Hiroyuki

Abstract

AbstractMotion artefacts caused by the patient’s body movements affect magnetic resonance imaging (MRI) accuracy. This study aimed to compare and evaluate the accuracy of motion artefacts correction using a conditional generative adversarial network (CGAN) with an autoencoder and U-net models. The training dataset consisted of motion artefacts generated through simulations. Motion artefacts occur in the phase encoding direction, which is set to either the horizontal or vertical direction of the image. To create T2-weighted axial images with simulated motion artefacts, 5500 head images were used in each direction. Of these data, 90% were used for training, while the remainder were used for the evaluation of image quality. Moreover, the validation data used in the model training consisted of 10% of the training dataset. The training data were divided into horizontal and vertical directions of motion artefact appearance, and the effect of combining this data with the training dataset was verified. The resulting corrected images were evaluated using structural image similarity (SSIM) and peak signal-to-noise ratio (PSNR), and the metrics were compared with the images without motion artefacts. The best improvements in the SSIM and PSNR were observed in the consistent condition in the direction of the occurrence of motion artefacts in the training and evaluation datasets. However, SSIM > 0.9 and PSNR > 29 dB were accomplished for the learning model with both image directions. The latter model exhibited the highest robustness for actual patient motion in head MRI images. Moreover, the image quality of the corrected image with the CGAN was the closest to that of the original image, while the improvement rates for SSIM and PSNR were approximately 26% and 7.7%, respectively. The CGAN model demonstrated a high image reproducibility, and the most significant model was the consistent condition of the learning model and the direction of the appearance of motion artefacts.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3