Unsupervised MRI motion artifact disentanglement: introducing MAUDGAN

Author:

Safari MojtabaORCID,Yang XiaofengORCID,Chang Chih-WeiORCID,Qiu Richard L J,Fatemi Ali,Archambault LouisORCID

Abstract

Abstract Objective. This study developed an unsupervised motion artifact reduction method for magnetic resonance imaging (MRI) images of patients with brain tumors. The proposed novel design uses multi-parametric multicenter contrast-enhanced T1W (ceT1W) and T2-FLAIR MRI images. Approach. The proposed framework included two generators, two discriminators, and two feature extractor networks. A 3-fold cross-validation was used to train and fine-tune the hyperparameters of the proposed model using 230 brain MRI images with tumors, which were then tested on 148 patients’ in-vivo datasets. An ablation was performed to evaluate the model’s compartments. Our model was compared with Pix2pix and CycleGAN. Six evaluation metrics were reported, including normalized mean squared error (NMSE), structural similarity index (SSIM), multi-scale-SSIM (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and multi-scale gradient magnitude similarity deviation (MS-GMSD). Artifact reduction and consistency of tumor regions, image contrast, and sharpness were evaluated by three evaluators using Likert scales and compared with ANOVA and Tukey’s HSD tests. Main results. On average, our method outperforms comparative models to remove heavy motion artifacts with the lowest NMSE (18.34±5.07%) and MS-GMSD (0.07 ± 0.03) for heavy motion artifact level. Additionally, our method creates motion-free images with the highest SSIM (0.93 ± 0.04), PSNR (30.63 ± 4.96), and VIF (0.45 ± 0.05) values, along with comparable MS-SSIM (0.96 ± 0.31). Similarly, our method outperformed comparative models in removing in-vivo motion artifacts for different distortion levels except for MS- SSIM and VIF, which have comparable performance with CycleGAN. Moreover, our method had a consistent performance for different artifact levels. For the heavy level of motion artifacts, our method got the highest Likert scores of 2.82 ± 0.52, 1.88 ± 0.71, and 1.02 ± 0.14 (p-values 0.0001) for our method, CycleGAN, and Pix2pix respectively. Similar trends were also found for other motion artifact levels. Significance. Our proposed unsupervised method was demonstrated to reduce motion artifacts from the ceT1W brain images under a multi-parametric framework.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3