Ag nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metals

Author:

Talukder Md Eman,Pervez Md. Nahid,Jianming Wang,Stylios George K.,Hassan Mohammad Mahbubul,Song Hongchen,Naddeo Vincenzo,Figoli Alberto

Abstract

AbstractIn this work, Eucommia ulmoides leaf extract (EUOLstabilized silver nanoparticles (EUOL@AgNPs) incorporated sulfonated polyether sulfone (SPES)/polyethersulfone (PES) electrospun nanofiber membranes (SP ENMs) were prepared by electrospinning, and they were studied for the removal of lead (Pb(II)) and cadmium (Cd(II)) ions from aqueous solutions. The SP ENMs with various EUOL@AgNPs loadings were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscope, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle (CA) measurements. The adsorption studies showed that the adsorption of Cd(II) and Pb(II) was rapid, achieved equilibrium within 40 min and 60 min, respectively and fitted with non-linear pseudo-second-order (PSO) kinetics model. For Cd(II) and Pb(II), the Freundlich model described the adsorption isotherm better than the Langmuir isotherm model. The maximum adsorption capacity for Cd(II) and Pb(II) was 625 and 370.37 mg g−1 respectively at neutral pH. Coexisting anions of fluoride, chloride, and nitrate had a negligible influence on Cd(II) removal than the Pb(II). On the other hand, the presence of silicate and phosphate considerably affected Cd(II) and Pb(II) adsorption. The recyclability, regeneration, and reusability of the fabricated EUOL@AgNPs-SP ENMs were studied and they retained their high adsorption capacity up to five cycles. The DFT measurements revealed that SP-5 ENMs exhibited the highest adsorption selectivity for Cd(II) and the measured binding energies for Cd(II), Pb(II), are 219.35 and 206.26 kcal mol−1, respectively. The developed ENM adsorbent may find application for the removal of heavy metals from water.

Funder

Università degli Studi di Salerno

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3