Polyethylenimine Grafted onto Nano-NiFe2O4@SiO2 for the Removal of CrO42−, Ni2+, and Pb2+ Ions from Aqueous Solutions

Author:

Khalaj Mehdi1ORCID,Khatami Seyed-Mola2,Kalhor Mehdi3,Zarandi Maryam1ORCID,Anthony Eric Tobechukwu4ORCID,Klein Axel4ORCID

Affiliation:

1. Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra 14778-93855, Iran

2. Department of Chemical Industry, Technical and Vocational University (TVU), Tehran 14357-61137, Iran

3. Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran

4. Institute for Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstrasse 6, 50939 Köln, Germany

Abstract

Polyethyleneimine (PEI) has been reported to have good potential for the adsorption of metal ions. In this work, PEI was covalently bound to NiFe2O4@SiO2 nanoparticles to form the new adsorbent NiFe2O4@SiO2–PEI. The material allowed for magnetic separation and was characterized via powder X-ray diffraction (PXRD), showing the pattern of the NiFe2O4 core and an amorphous shell. Field emission scanning electron microscopy (FE-SEM) showed irregular shaped particles with sizes ranging from 50 to 100 nm, and energy-dispersive X-ray spectroscopy (EDX) showed high C and N contents of 36 and 39%, respectively. This large amount of PEI in the materials was confirmed by thermogravimetry–differential thermal analysis (TGA-DTA), showing a mass loss of about 80%. Fourier-transform IR spectroscopy (FT-IR) showed characteristic resonances of PEI dominating the spectrum. The adsorption of CrO42−, Ni2+, and Pb2+ ions from aqueous solutions was studied at different pH, temperatures, metal ion concentrations, and adsorbent dosages. The maximum adsorption capacities of 149.3, 156.7, and 161.3 mg/g were obtained for CrO42−, Ni2+, and Pb2+, respectively, under optimum conditions using 0.075 g of the adsorbent material at a 250 mg/L ion concentration, pH = 6.5, and room temperature.

Funder

German Academic Exchange Service

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3