Evolution of lattice distortions in 4H-SiC wafers with varying doping

Author:

Mahadik Nadeemullah A.,Das Hrishikesh,Stoupin Stanislav,Stahlbush Robert E.,Bonanno Peter L.,Xu Xueping,Rengarajan Varatharajan,Ruland Gary E.

Abstract

AbstractLattice distortions (LD) in 4H-silicon carbide (SiC) wafers were quantified using synchrotron X-ray rocking curve mapping (RCM), and were resolved into their two components of lattice strain (Δd/d) and lattice plane curvature (LPC) for 150 mm diameter wafers. The evolution of these LDs were investigated for three sequential substrates from the same boule, one of which was the substrate reference, and the other two had a 10 µm thick, 1 × 1017 and 4 × 1014 cm-3 n-type doped epitaxial layer. The lattice strain, Δd/d, was highest for the lowest doped wafer due to higher mismatch with the substrate wafer. After epitaxial layer growth, the LPC variation across the wafer increases by a factor of 2, irrespective of doping. The LPC maps indicate presence of a twist in the lattice planes that increases after epitaxial growth. The LPC component has higher influence on wafer shape change, which can reduce device yields. The lattice strain component predominantly affects the glide of basal plane dislocations (BPDs), thereby reducing device reliability. From analysis of peak widths, it was determined that threading dislocations in the top 6 microns of the wafer increase after epitaxial layer growth.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introducing Transfer Learning Framework on Device Modeling by Machine Learning;2023 35th International Conference on Microelectronic Test Structure (ICMTS);2023-03-27

2. Effect of water film on the nano-scratching process of 4H-SiC under the constant load;Tribology International;2022-11

3. dGPLVM: A Nonparametric Device Model for Statistical Circuit Simulation;2022 IEEE 34th International Conference on Microelectronic Test Structures (ICMTS);2022-03-21

4. Adaptive Outlier Detection for Power MOSFETs Based on Gaussian Process Regression;2022 IEEE Applied Power Electronics Conference and Exposition (APEC);2022-03-20

5. Rocking Curve Imaging Investigation of the Long-Range Distortion Field between Parallel Dislocations with Opposite Burgers Vectors;Applied Sciences;2021-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3