Continued fractions and the Thomson problem

Author:

Moscato Pablo,Haque Mohammad Nazmul,Moscato Anna

Abstract

AbstractWe introduce new analytical approximations of the minimum electrostatic energy configuration of n electrons, E(n), when they are constrained to be on the surface of a unit sphere. Using 453 putative optimal configurations, we searched for approximations of the form $$E(n) = (n^2/2) \, e^{g(n)}$$ E ( n ) = ( n 2 / 2 ) e g ( n ) where g(n) was obtained via a memetic algorithm that searched for truncated analytic continued fractions finally obtaining one with Mean Squared Error equal to $${5.5549 \times 10^{-8}}$$ 5.5549 × 10 - 8 for the model of the normalized energy ($$E_n(n) \equiv e^{g(n)} \equiv 2E(n)/n^2$$ E n ( n ) e g ( n ) 2 E ( n ) / n 2 ). Using the Online Encyclopedia of Integer Sequences, we searched over 350,000 sequences and, for small values of n, we identified a strong correlation of the highest residual of our best approximations with the sequence of integers n defined by the condition that $$n^2+12$$ n 2 + 12 is a prime. We also observed an interesting correlation with the behavior of the smallest angle $$\alpha (n)$$ α ( n ) , measured in radians, subtended by the vectors associated with the nearest pair of electrons in the optimal configuration. When using both $$\sqrt{n}$$ n and $$\alpha (n)$$ α ( n ) as variables a very simple approximation formula for $$E_n(n)$$ E n ( n ) was obtained with MSE= $$7.9963 \times 10^{-8}$$ 7.9963 × 10 - 8 and MSE= 73.2349 for E(n). When expanded as a power series in infinity, we observe that an unknown constant of an expansion as a function of $$n^{-1/2}$$ n - 1 / 2 of E(n) first proposed by Glasser and Every in 1992 as $$-1.1039$$ - 1.1039 , and later refined by Morris, Deaven and Ho as $$-1.104616$$ - 1.104616 in 1996, may actually be very close to −1.10462553440167 when the assumed optima for $$n\le 200$$ n 200 are used.

Funder

Australian Research Council

Maitland Cancer Appeal

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference37 articles.

1. Michaud, E. J., Liu, Z. & Tegmark, M. Precision machine learning. Entropy 25, 175 (2023).

2. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

3. Schmidt, M. & Lipson, H. Eureqa (version 1.24.0). Software (2018).

4. Udrescu, S.-M. & Tegmark, M. AI Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

5. Udrescu, S. et al. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H. (eds.) Advances in Neural Information Processing Systems 33 (NeurIPS 2020) (2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3