Approximating the nuclear binding energy using analytic continued fractions

Author:

Moscato Pablo,Grebogi Rafael

Abstract

AbstractUnderstanding nuclear behaviour is fundamental in nuclear physics. This paper introduces a data-driven approach, Continued Fraction Regression (), to analyze nuclear binding energy (B(AZ)). Using a tailored loss function and analytic continued fractions, our method accurately approximates stable and experimentally confirmed unstable nuclides. We identify the best model for nuclides with $$A\ge 200$$ A 200 , achieving precise predictions with residuals smaller than 0.15 MeV. Our model’s extrapolation capabilities are demonstrated as it converges with upper and lower bounds at the nuclear mass limit, reinforcing its accuracy and robustness. The results offer valuable insights into the current limitations of state-of-the-art data-driven approaches in approximating the nuclear binding energy. This work provides an illustration on the use of analytical continued fraction regression for a wide range of other possible applications.

Funder

Australian Research Council’s Discovery Projects

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3