Bioinformatics of cyanophycin metabolism genes and characterization of promiscuous isoaspartyl dipeptidases that catalyze the final step of cyanophycin degradation

Author:

Sharon Itai,Schmeing T. Martin

Abstract

AbstractCyanophycin is a bacterial biopolymer used for storage of fixed nitrogen. It is composed of a backbone of L-aspartate residues with L-arginines attached to each of their side chains. Cyanophycin is produced by cyanophycin synthetase 1 (CphA1) using Arg, Asp and ATP, and is degraded in two steps. First, cyanophycinase breaks down the backbone peptide bonds, releasing β-Asp-Arg dipeptides. Then, these dipeptides are broken down into free Asp and Arg by enzymes with isoaspartyl dipeptidase activity. Two bacterial enzymes are known to possess promiscuous isoaspartyl dipeptidase activity: isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA). We performed a bioinformatic analysis to investigate whether genes for cyanophycin metabolism enzymes cluster together or are spread around the microbial genomes. Many genomes showed incomplete contingents of known cyanophycin metabolizing genes, with different patterns in various bacterial clades. Cyanophycin synthetase and cyanophycinase are usually clustered together when recognizable genes for each are found within a genome. Cyanophycinase and isoaspartyl dipeptidase genes typically cluster within genomes lacking cphA1. About one-third of genomes with genes for CphA1, cyanophycinase and IaaA show these genes clustered together, while the proportion is around one-sixth for CphA1, cyanophycinase and IadA. We used X-ray crystallography and biochemical studies to characterize an IadA and an IaaA from two such clusters, in Leucothrix mucor and Roseivivax halodurans, respectively. The enzymes retained their promiscuous nature, showing that being associated with cyanophycin-related genes did not make them specific for β-Asp-Arg dipeptides derived from cyanophycin degradation.

Funder

Canadian Institutes of Health Research

Canada Research Chairs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a dependable data set of structures for L-asparaginase research;Acta Crystallographica Section D Structural Biology;2024-06-27

2. Structure and function of a hexameric cyanophycin synthetase 2;Protein Science;2023-06-16

3. Cyanophycin and its biosynthesis: not hot but very cool;Natural Product Reports;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3