Affiliation:
1. Unité de Physiologie Microbienne, Département de Biochimie et Génétique Moléculaire, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cédex 15, France
Abstract
Cyanobacteria can utilize nitrate or ammonium as a source of fixed nitrogen for cell growth. In the filamentous Calothrix sp. strain PCC 7601, these two sources of nitrogen differently influenced the phycobiliprotein composition of the phycobilisomes, the major light-harvesting antennae. When compared to nitrate, growth in the presence of ammonium resulted in intracellular steadystate levels 35% lower for phycoerythrin and 46% higher for phycocyanin. Besides these differences in cell pigmentation, a rapid but transient accumulation of cyanophycin granule polypeptide occurred in ammoniumgrown cells, while these macromolecules were not detected in cells grown with nitrate. In contrast, glycogen reserves displayed a dynamic pattern of accumulation and disappearance during cell growth which varied only slightly with the nitrogen source. The observed changes in cell pigmentation are reminiscent of the phenomenon of complementary chromatic adaptation, in which green and red wavelengths promote the syntheses of phycoerythrin and phycocyanin-2, respectively. As in complementary chromatic adaptation, the regulation of synthesis of phycoerythrin and phycocyanin-2 by the nitrogen source occurred mainly at the mRNA level. Moreover, the transcriptional start sites for the expression of the cpeBA and the cpc2 operons, which respectively encode the two subunits of phycoerythrin and phycocyanin-2, were the same in cells grown in nitrate or ammonium, and identical to those in green-and red-light-grown cells. The results of this study suggest that acclimation to the spectral light quality and to the nitrogen source share some common regulatory elements.
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献