Author:
Bilal Muhammad,Ullah Ikram,Alam Mohammad Mahtab,Shah Syed Irfan,Eldin Sayed M.
Abstract
AbstractThe aim of the current analysis is to evaluate the significances of magnetic dipole and heat transmission through ternary hybrid Carreau Yasuda nanoliquid flow across a vertical stretching sheet. The ternary compositions of Al2O3, SiO2, and TiO2 nanoparticles (nps) in the Carreau Yasuda fluid are used to prepare the ternary hybrid nanofluid (Thnf). The heat transfer and velocity are observed in context of heat source/sink and Darcy Forchhemier effect. Mathematically, the flow scenario has been expressed in form of the nonlinear system of PDEs for fluid velocity and energy propagation. The obtained set of PDEs are transform into ODEs through suitable replacements. The obtained dimensionless equations are computationally solved with the help of the parametric continuation method. It has been observed that the accumulation of Al2O3, SiO2 and TiO2-nps to the engine oil, improves the energy and momentum profiles. Furthermore, as compared to nanofluid and hybrid nanofluid, ternary hybrid nanofluid have a greater tendency to boost the thermal energy transfer. The fluid velocity lowers with the outcome of the ferrohydrodynamic interaction term, while enhances with the inclusion of nano particulates (Al2O3, SiO2 and TiO2).
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献