Enhanced HIV SOSIP Envelope yields in plants through transient co-expression of peptidyl-prolyl isomerase B and calreticulin chaperones and ER targeting

Author:

Rosenberg Yvonne J.,Jiang Xiaoming,Lees Jonathan P.,Urban Lori A.,Mao Lingjun,Sack Markus

Abstract

AbstractHigh yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell’s calnexin/calreticulin network and accelerating the rate-limiting cis–trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3