Near band gap luminescence in hybrid organic-inorganic structures based on sputtered GaN nanorods
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/s41598-017-01052-4.pdf
Reference26 articles.
1. Agranovich, V. M., Gartstein, Y. N. & Litinskaya, M. Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem. Rev. 111, 5179–5214 (2011).
2. Itskos, G., Othonos, A., Choulis, S. A. & Iliopoulos, E. Förster resonant energy transfer from an inorganic quantum well to a molecular material: unexplored aspects, losses, and implications to applications. J. Chem. Phys. 143, 214701 (2015).
3. Itskos, G. et al. Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga,In)N quantum well/polyfluorene semiconductor heterostructures. Phys. Rev. B 76, 035344 (2007).
4. Chanyawadee, S., Lagoudakis, P. G., Harley, R. T., Lidzey, D. G. & Henini, M. Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures. Phys. Rev. B 77, 193402 (2008).
5. Kim, H. et al. Surface and interface states of gallium-polar versus nitrogen-polar GaN: Impact of thin organic semiconductor overlayers. J. Appl. Phys. 107, 113707 (2010).
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fröhlich resonance splitting in hybrid GaN nanowire-Ag nanoparticle structures;New Journal of Physics;2024-05-01
2. Flexible perylenediimide/GaN organic–inorganic hybrid system with exciting optical and interfacial properties;Scientific Reports;2020-06-26
3. Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials;Advanced Materials Interfaces;2018-12-11
4. Approach to high quality GaN lateral nanowires and planar cavities fabricated by focused ion beam and metal-organic vapor phase epitaxy;Scientific Reports;2018-05-08
5. Selective-area growth of single-crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing;Scientific Reports;2017-10-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3