Abstract
AbstractDinosaur embryos are among the rarest of fossils, yet they provide a unique window into the palaeobiology of these animals. Estimating the developmental stage of dinosaur embryos is hindered by the lack of a quantitative method for age determination, by the scarcity of material, and by the difficulty in visualizing that material. Here we present the results of a broad inquiry, using 3D reconstructions from X-ray computed tomography data, into cranial ossification sequences in extant saurian taxa and in well-preserved embryos of the early branching sauropodomorph dinosaur Massospondylus carinatus. Our findings support deep-time conservation of cranial ossification sequences in saurians including dinosaurs, allowing us to develop a new method for estimating the relative developmental percentage of embryos from that clade. We also observe null-generation teeth in the Massospondylus carinatus embryos which get resorbed or shed before hatching, similar to those of geckos. These lines of evidence allow us to confidently estimate that the Massospondylus carinatus embryos are only approximately 60% through their incubation period, much younger than previously hypothesized. The overall consistency of our results with those of living saurians indicates that they can be generalized to other extinct members of that lineage, and therefore our method provides an independent means of assessing the developmental stage of extinct, in-ovo saurians.
Funder
DST-NRF African Origins Platform
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献