High-energy synchrotron-radiation-based X-ray micro-tomography enables non-destructive and micro-scale palaeohistological assessment of macro-scale fossil dinosaur bones

Author:

Imai Takuya,Hattori SokiORCID,Uesugi KentaroORCID,Hoshino MasatoORCID

Abstract

Palaeohistological analysis has numerous applications in understanding the palaeobiology of extinct dinosaurs. Recent developments of synchrotron-radiation-based X-ray micro-tomography (SXMT) have allowed the non-destructive assessment of palaeohistological features in fossil skeletons. Yet, the application of the technique has been limited to specimens on the millimetre to micrometre scale because its high-resolution capacity has been obtained at the expense of a small field of view and low X-ray energy. Here, SXMT analyses of dinosaur bones with widths measuring ∼3 cm under a voxel size of ∼4 µm at beamline BL28B2 at SPring-8 (Hyogo, Japan) are reported, and the advantages of virtual-palaeohistological analyses with large field of view and high X-ray energy are explored. The analyses provide virtual thin-sections visualizing palaeohistological features comparable with those obtained by traditional palaeohistology. Namely, vascular canals, secondary osteons and lines of arrested growth are visible in the tomography images, while osteocyte lacunae are unobservable due to their micrometre-scale diameter. Virtual palaeohistology at BL28B2 is advantageous in being non-destructive, allowing multiple sampling within and across skeletal elements to exhaustively test the skeletal maturity of an animal. Continued SXMT experiments at SPring-8 should facilitate the development of SXMT experimental procedures and aid in understanding the paleobiology of extinct dinosaurs.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3