Author:
Baheri Yalda Tarpoudi,Maleki Mahdi,Karimian Hossein,Javadpoor Jafar,Masoudpanah Seyed Morteza
Abstract
AbstractMolybdenum disulfide (MoS2) has been a promising anode material in lithium-ion batteries (LIBs) because of its high theoretical capacity and large interlayer spacing. However, its intrinsic poor electrical conductivity and large volume changes during the lithiation/delithiation reactions limit its practical application. An efficient synthesis strategy was developed to prepare the MoS2 nanocrystals well-anchored into the N-doped nanoporous carbon framework to deal with these challenges by a confined reaction space in an acrylonitrile-based porous polymer during the carbonization process. The prepared hybrid material comprises small 1T/2H-MoS2 nanoparticles surrounded by a nanoporous carbon matrix. In addition to the highly crystalline nature of the synthesized MoS2, the low ID/IG of the Raman spectrum demonstrated the development of graphitic domains in the carbon support during low-temperature pyrolysis (700 °C). This novel three-dimensional (3D) hierarchical composite shows superior advantages, such as decreased diffusion lengths of lithium ions, preventing the agglomeration of MoS2 nanocrystals, and maintaining the whole structural stability. The prepared C/MoS2 hybrid demonstrated fast rate performance and satisfactory cycling stability as an anode material for LIBs.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献